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Area Spectrum of Near Extremal Black Branes
from Quasi-Normal Modes
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Bekenstein and others propose that the black hole area spectrum is discrete and equally
spaced. We implement Kunstatter’s method to derive the area spectrum for near extremal
black 3-branes. The area spectrum of the event horizon is discrete but not equally spaced.
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1. INTRODUCTION

Dynamical properties of a thermal gauge theory are encoded in its Green’s
functions. In the context of AdS/CFT (Maldacena, 1998), Minkowski-space
Green’s functions can be computed from gravity using the recipe given in Son
and Starinets (2002). Unfortunately, for a non-extremal background, only approxi-
mate expressions for the correlators are usually obtained. Even thought the retarded
Green’s function in four dimensions cannot be found explicitly, the location of its
singularities can be determined precisely. As shown by Son and Starinets (2002),
this amounts to finding the quasi-normal frequencies of dilaton fluctuation in the
dual near extremal black brane background as functions of the spatial momentum.
The possibility of a connection between the quasi-normal frequencies of black
holes and the quantum properties of the entropy spectrum was first observed by
Bekenstein (1997), and further developed by Hod (1998). Bekenstein noted that
Bohr’s correspondence principle implies that frequencies characterizing transi-
tions between energy levels of a quantum black hole at large quantum numbers
correspond to the black hole’s classical oscillation (quasi-normal mode) frequen-
cies (see also Kokkotas and Schmidt, 1999; Nollert, 1999). In particular, Hod
proposed that the real part of the quasi-normal frequencies, in the infinite damping
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limit (i.e., the n → ∞ limit), might be related via Bohr’s correspondence princi-
ple to the fundamental quanta of mass and angular momentum (see also Abdalla
et al., 2003; Bekenstein, 2000; Bekenstein and Mukhanov, 1995; Birmingham,
2003; Cardoso and Lemos, 2003; Corichi, 2003; Kastrup, 1996; Padmanabhan,
2004; Padmanabhan and Patel, 2003; Polychronakos, 2003; Roy Choudhury and
Padmanabhan, 2004).

In asymptotically flat spacetimes, the idea of QNMs started with the work
of Regge and Wheeler (1957) where the stability of a Schwarzschild black hole
was tested, and were first numerically computed by Chandrasekhar and Detweiler
(1975) several years later. Recently, there has been considerable interest in study-
ing the quasi-normal modes in different contexts: in AdS/CFT duality conjecture
(Birmingham and Carlip, 2004; Birmingham et al., 2002; Cardoso and Lemos,
2001a,b; Chan and Mann, 1997; Horowitz and Hubeny, 2000; Kim and Oh, 2001;
Moss and Norman, 2002; Wang et al., 2000), when considering thermodynamic
properties of black holes in loop quantum gravity (Dreyer, 2003; Kunstatter, 2003;
Ling and Zhang, 2003), in the context of possible connection with critical col-
lapse (Horowitz and Hubeny, 2000; Kim and Oh, 2001; Konoplya, 2002), also
when considering the area spectrum of black holes (Das and Shankaranarayanan,
2004; Lepe and Saavedra, 2005; Setare, 2004a,b; Setare and Vagenas, 2004).
Recently, it has been observed that the quasi-normal modes can play a funda-
mental role in loop quantum gravity (Dreyer, 2003). Dreyer showed that in order
to have consistency between the Bekenstein–Hawking entropy calculation and
quasi-normal-mode frequencies, one had to assume that the minimum of j of
the spin network piercing the horizon and contributing significantly to the en-
tropy had to be j = 1. With this choice, the resulting Immrizi parameter would
be given by γ = ln 3

2ππ
√

2
. He suggested that if the gauge group of the theory

were changed from SU (2) to SO(3) then this requirement would be immediately
satisfied.

For the Schwarzschild black hole in four dimensions, the asymptotic real part
of the gravitational quasi-normal frequencies is of the form ω = TH ln 3 where TH

is the Hawking temperature (Motl, 2003). The suggestion of Hod was to identify
hω with the fundamental quantum of mass �M . This identification immediately
leads to an area spacing of the form �A = 4 h ln 3. An elegant approach, for the
Schwarzschild black hole in d dimensions, based on analytic continuation and
computation of the monodromy of the perturbation was proposed in (Motl and
Neitzke, 2003).

In the present paper, we extend directly Kunstatter’s (2003) approach to
determine mass and area spectrum of the near extremal black 3-branes. According
to this approach, an adiabatic invariant I = ∫

dE
ω(E) , where E is the energy of

system and ω(E) is the vibrational frequency, has an equally spaced spectrum,
i.e., I ≈ n h, applying the Bohr–Sommerfeld quantization at the large n limit.
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2. COINCIDENT D-3 BRANES

We consider now the background (in the string frame) of a black hole de-
scribing a number of coinciding D-3 branes (Klebanov, 1999; Kiritsis, 1999)

ds2 = H−1/2(r)

[
−f (r)dt2 +

3∑
i=1

(dxi)2

]
+ H 1/2

[
f −1(r)dr2 + r2d�2

5

]
, (1)

where

H (r) = 1 + l4

r4
, f (r) = 1 − r4

0

r4
, (2)

and d�2
5 is the metric of a unit five-dimensional sphere. The horizon is located

at r = r0 and the extremality is achieved in the limit r0 → 0. For l much larger
than the string scale

√
α′, the entire 3-brane geometry has small curvatures every

where and is appropriately described by the supergravity approximation to type
IIB string theory (Klebanov, 1999). The requirement l � √

α′ translates into the
language of U (N ) SYM theory on N coincident D-3 branes. To this end, it is
convenient to equate the ADM tension of the extremal 3-brane classical solution
to N times the tension of a single D-3 brane. Then one can find (Gubser et al.,
1996)

2l4�5

k2
= N

√
π

k
, (3)

where �5 = π3 is the volume of a unit 5 sphere, and k = √
8πG is the

10-dimensional gravitational constant. Therefore,

l4 = kN

2π5/2
. (4)

In the other hand, we have

k = 8π7/2gsα
′2, (5)

where gs is the string coupling, then we obtain

l4 = 4πNgsα
′2. (6)

The parameters l and r0 are related to the ADM mass in the following way

M = �5V3

2k2
10

(
5r4

0 + 4l4
)
. (7)

Now we would like to consider the near extremal 3-brane geometry. In the near-
horizon region, r � l, we may replace H (r) by l4

r4 . The resulting metric is as
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following

ds2 = r2

l2

[
−

(
1 − r4

0

r4

)
dt2 + d−→x 2

]
+ l2

r2

(
1 − r4

0

r4

)−1

dr2 + l2d�2
5. (8)

The metric given earlier is a product of S5 with a certain limit of the Schwarzschild
black hole in AdS5. The eight-dimensional area of the horizon can be read off
from metric (8). If the spatial volume of the D-3 brane is taken to be V3, then we
find

Ah =
( r0

l

)3
V3l

5�5 = π6l8T 3V3, (9)

where T is a temperature

T = r0

πl2
. (10)

Using (4) we arrive at the Bekenstein–Hawking entropy (Gubser et al., 1996)

SBH = 2πAh

k2
= π2N2V3T

3

2
. (11)

3. QUASI-NORMAL MODES AND AREA SPECTRUM

Given a system with energy E and vibrational frequency ω(E), one can show
that the quantity

I =
∫

dE

ω(E)
(12)

where dE = dM , is an adiabatic invariant (Kunstatter, 2003) and as already men-
tioned in Section 1, via Bohr–Sommerfeld quantization has an equally spaced
spectrum in the large n limit

I ≈ n h. (13)

The large n asymptotic behavior of quasi-normal frequencies given by following
expression (Starinets, 2002)

ω±
n = ω±

0 ± 2πT n(1 ∓ i), (14)

where

ω±
0 = πT λ±

0 , (15)

where λ±
0 ≈ ±1.2139 − 0.7775i. Now by taking ωR as

ωR = ±πT (2n + 1.2139), (16)
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then by substituting Equation (10) we get

ωR = ±r0

l2
(2n + 1.2139). (17)

By taking M as given by Equation (7) and substituting Equation (6), we obtain

M = V3

128π4α′4g2
s

(
5r4

0 + 16πNgsα
′2). (18)

Then, the parameter r0 is given by

r0 = (aM − b)1/4, (19)

where

a = 128π4α′4g2
s

5V3
, b = 16πNα′2gs

5
. (20)

Now by taking ωR as given by expression (17) and substituting Equations (19)
and (6), we get

ωR = ±(aM − b)1/4

2α′√πNgs
(2n + 1.2139). (21)

Thus, the adiabatically invariant integral (12) is written as

I = ±2α′√πNgs

(2n + 1.2139)

∫
dM

(aM − b)1/4
, (22)

and after integration, we obtain

I = 5V3

√
N

48π7/2α′3g3/2
s (2n + 1.2139)

(aM − b)3/4. (23)

Now using Equations (10) and (19), we can rewrite the area of the horizon
Equation (9) as

Ah = π3l2V3r
3
0 = π3l2V3(aM − b)3/4. (24)

Using Equation (23) the area is given by following expression

Ah = 3(2n + 1.2139)

160
π7α′4g2

s I = 3

160
π7α′4g2

s (2n + 1.2139)n h. (25)

It is obvious that the area spectrum, although discrete, is not equivalently spaced.
The quasi-normal frequencies, which given by Equation (14) were later gener-
alized in the paper by Nunez and Starinets (2003, Equations (3.22)–(3.23)), but
all these formulae are asymptotics rather than exact results. However, for vector
perturbations (and spatial momentum on the brane equal to zero) the spectrum
turns out to be exact and given by following relation

ωn = n(1 − i), n = 0, 1, . . . (26)
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therefore, the integral equation (12) yields

I = M

n
, (27)

and by equating expressions (27) and (13), we get

M = n2 h. (28)

It is obvious that the mass spectrum of 3-black brane is quantize.

4. CONCLUSION

The possibility of a connection between quasi-normal modes and the area
spectrum of black holes has been actively pursued over the past year. Many
examples have been studied, and progress has been made towards a general under-
standing of this connection. Bekenstein’s idea for quantizing a black hole is based
on the fact that its horizon area, in the non-extremal case, behaves as a classical
adiabatic invariant. It is interesting to investigate how near extremal black 3-branes
would be quantized. Discrete spectra arise in quantum mechanics in the presence
of a periodicity in the classical system, which in turn leads to the existence of
an adiabatic invariant or action variable. Bohr–Sommerfeld quantization implies
that this adiabatic invariant has an equally spaced spectrum in the semi-classical
limit. Kunstatter showed that this approach works for the Schwarzschild black
holes in any dimension, giving asymptotically equally spaced areas. Previously,
we have showed that the generalization to non-rotating BTZ, extremal Reissner–
Nordström, near extremal Schwarzschild–de Sitter Kerr and extremal Kerr black
holes (Lepe and Saavedra, 2005; Setare, 2004a,b,c; Setare and Vagenas, 2004) is
also successful.

In this article, we have considered the near extremal black 3-branes. Using
the results for highly damped quasi-normal modes in Equation (14), we obtained
the area spectrum of event horizon in Equation (25). It is obvious that the area
spectrum, although discrete, is not equally spaced. Using the generalized form of
quasi-normal modes Equation (26), we obtained the mass spectrum of the near
extremal 3-black brane as Equation (28). A similar situation occurs for a BTZ
black hole (Setare, 2004a,b), where the area of the event horizon is not equally
spaced, in contrast with area spectrum of the black hole in higher dimensions,
although the mass spectrum is equally spaced.
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